37. Wan C*, Gorb SN, 2023. Functional morphology and biomechanics of arthropods. Journal of Comparative Physiology A. https://doi.org/10.1007/s00359-023-01621-1. (Published online first) (SCI, IF2020=2.39)
36. Zhao W, Ma Q, Li Z, Wan C*, 2022. Functional compliance and protective stiffness: cross-veins in the hind wing of locust Locusta migratoria. Journal of Comparative Physiology A. https://doi.org/10.1007/s00359-022-01587-6. (Published online first) (SCI, IF2020=2.39)
35. 万超,于洋,霍波,2022. 新工科背景下力学跨学科课程的建设与探讨.力学与实践 44(2):379-384.
34. 万超,王伟,于洋,霍波,2022. 人体运动与肌肉骨骼系统生物力学虚拟仿真教学实验开发与应用.实验室研究与探索 41(8) 203-208,252.
33. 王伟,陈柏霖,万超,王正平,王辉,2022. 科技冬奥智能穿戴式冰雪运动装备运动风险实验研究平台. 实验技术与管理 39(305): 1-5.
32. 万超,侯世杰,王伟,陈佳一,2022. 基于假人仿真模型的冰雪运动生物力学教学实验设计.实验技术与管理39(305): 12-17,35.
31. Wan C*, Gorb SN, 2021. Body-catapult mechanism of the sandhopper jump and its biomimetic implications. Acta Biomaterialia 124, 282-290. DOI: 10.1016/j.actbio.2021.01.033. (SCI, EI, IF2020=10.63)
30. 李中杰,万超,2021. 关节软骨力学特性间接预测方法的研究进展. 医用生物力学 36(3):472-478.
29. Wan C*, Hao ZX, 2020. Natural arrangement of micro-strips reduces shear strain in the locust cuticle during power amplification. Journal of Biomechanics 107, 109842. Doi: 10.1016/j.jbiomech.2020.109842. (SCI, EI, IF2020=2.79)
28. Wan C*, Hao ZX, Gorb SN, 2020. Time-scale mechanical behaviors of locust semi-lunar process cuticles under power amplification for rapid movements. Journal of Biomechanics 104: 109742. Doi: 10.1016/j.jbiomech.2020.109742. (SCI, EI, IF2020=2.79)
27. Wan C*, Cao RT, Hao ZX*, 2020. The Effect of Ground Type on the Jump Performance of Adults of the Locust Locusta migratoria manilensis: A Preliminary Study. Insects 11(4), 259. Doi: 10.3390/insects11040259. (SCI, EI, IF2020=3.14)
26. Wan C*, Gorb S, 2020. Friction Reduction Mechanism of the Cuticle Surface in the Sandhopper Talitrus Saltator (Amphipoda, Talitridae). Acta Biomaterialia 101, 414-421. Doi: 10.1016/j.actbio.2019.10.031. (SCI, EI, IF2020=10.63)
25. Ma Y, Wan C, Gorb S, Rajabi H, 2019. Biomechanics of fore wing to hind wing coupling in the southern green stink bug Nezara viridula (Pentatomidae). Acta Biomaterialia 100, 10-17. Doi: 10.1016/j.actbio.2019.09.027. (SCI, EI, IF2020=10.63)
24. Wan C*, Hao ZX, Feng X-Q, 2019. Mechanical characterization of the key portions in locust semi-lunar processes under different strain rates. Journal of Biomechanics 95: 109314. Doi: 10.1016/j.jbiomech.2019.08.008. (SCI, EI, IF2020=2.79)
23. Wan C*, Ma Y, Gorb SN*, 2019. Compromise between mechanical and chemical protection mechanisms in the Mytilus edulis shell. Journal of Experimental Biology 222, jeb201103. Doi:10.1242/jeb.201103. (SCI, IF2020=3.31)
22. Lu Y, Hao ZX, Wan C*, 2019. Morphological and mechanical characterization of collagen-coated native silk fibroin fibers using chemical method. Materials Research Express 6(8): 085410. Doi: 10.1088/2053-1591/ab2315. (SCI, IF2020=2.03)
21. Wan C, Ge L, Souza RB, Tang SY, Alliston T, Hao ZX, Li XJ*, 2019. T1ρ-based fibril-reinforced poroviscoelastic constitutive relation of human articular cartilage using inverse finite element technology. Quantitative imaging in medicine and surgery 9(3): 359-370. Doi: 10.21037/qims.2019.03.01. (SCI, IF2020=4.63)
20. Wan C, Hao Z*, 2018. Does the graft-tunnel friction influence knee joint kinematics and biomechanics after anterior cruciate ligament reconstruction? A finite element study. Computer Methods in Biomechanics and Biomedical Engineering 21(1):1-9. Doi: 10.1080/10255842.2018.1447103. (SCI, EI, IF2020=1.67)
19. Tong L, Hao Z*, Wan C, Wen S, 2018. Detection of depth-depend changes in porcine cartilage after wear test using Raman spectroscopy. Journal of Biophotonics, e201700217. Doi: 10.1002/jbio.201700217. (SCI, EI, IF2020=3.39)
18. Zhang J, Xiao L, Tong L, Wan C, Hao Z*, 2018. Quantitative Evaluation of Enzyme-Induced Porcine Articular Cartilage Degeneration Based on Observation of Entire Cartilage Layer Using Ultrasound. Ultrasound in Medicine and Biology 44(4): 861-871. Doi: 10.1016/j.ultrasmedbio.2017.11.016. (SCI, EI, IF2020=3.69)
17. Wan C, Hao ZX*, Li ZC, Lin JH, 2017. Finite element simulations of different hamstring tendon graft lengths and related fxations in anterior cruciate ligament reconstruction. Medical & Biological Engineering & Computing 55: 2097-2106. Doi:10.1007/s11517-017-1637-7. (SCI, EI, IF2020=3.08)
16. Cai HLY, Hao ZX*, Xiao LY, Wan C, Tong LY, 2017. The collagen microstructural changes of rat menisci and tibiofemoral cartilages under the influence of mechanical loading: An in vitro wear test of whole joints. Technology and health care 25(S1):207-217. Doi:10.3233/THC-171323. (SCI, IF2020=1.21)
15. Wan C, Hao ZX*, Feng X-Q, 2016. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts. Scientific Reports 6: 35219. Doi: 10.1038/srep35219. (SCI, IF2020=5.00)
14. Wan C, Hao ZX*, Wen SZ, 2016. The effect of healing in the medial collateral ligament of human knee joint: A three-dimensional finite element analysis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 230: 867-875. Doi: 10.1177/0954411916656662. (SCI, EI, IF2020=1.76)
13. Guo Y, Hao ZX*, Wan C*, 2016. Tribological characteristics of polyvinylpyrrolidone (PVP) as a lubrication additive for artificial knee joint. Tribology International 93: 214-219. Doi: 10.1016/j.triboint.2015.08.043. (*: Co-corresponding author) (SCI, EI, IF2020=5.62)
12. Wan C, Hao ZX*, Tong LY, Lin JH, Li ZC, Wen SZ, 2015. An update on the constitutive relation of ligament tissues with the effects of collagen types. Journal of the Mechanical Behavior of Biomedical Materials 50: 255–267. Doi:10.1016/j.jmbbm.2015.06.018. (SCI, EI, IF2020=4.04)
11. Wan C, Hao ZX*, Wen SZ, Leng HJ, 2014. A Quantitative Study of the Relationship between the Distribution of Different Types of Collagen and the Mechanical Behavior of Rabbit Medial Collateral Ligaments. PLOS ONE 9(7): e103363. Doi:10.1371/journal.pone.0103363. (SCI, IF2020=3.75)
10. Wan C, Hao ZX*, Wen SZ, 2014. A comparison of material characterizations in frequently used constitutive models of ligaments. International Journal for Numerical Methods in Biomedical Engineering 30(6): 605-615. Doi:10.1002/cnm.2619. (SCI, EI, IF2020=2.65)
9. Wan C, Hao ZX*, Wen SZ, 2014. The effect of the material property change of anterior cruciate ligament by ageing on joint kinematics and biomechanics under tibial varus/valgus torques. Bio-medical materials and engineering 24(1): 1375-1382. Doi:10.3233/BME-130941. (SCI, EI, IF2020=1.23)
8. 万超, 郝智秀*, 温诗铸, 林剑浩, 2014. 前交叉韧带移植物种类及拉力影响的有限元模拟. 清华大学学报(自然科学版) 54(10): 1282-1287. (EI)
7. Wan C, Hao ZX*, Wen SZ, 2013. A quantitative comparison of morphological and histological characteristics of collagen in rabbit medial collateral ligament. Annals of Anatomy-Anatomischer Anzeiger 195(6): 562-569. Doi:10.1016/j.aanaL2013.09.003. (SCI, IF2020=2.98)
6. Wan C, Hao ZX*, Wen SZ, 2013. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: A finite element study. Journal of Biomechanical Engineering-Transactions of the ASME 135: 041002. Doi:10.1115/1.4023696. (SCI, EI, IF2020=1.90)
5. Wan C, Hao ZX*, Wen SZ, 2013. A review on research on development of ligament constitutive relations on macro, meso, and micro levels. Acta mechanica solida sinica 26(4): 331-343. (SCI, EI, IF2020=2.19)
4. 万超, 郝智秀*, 温诗铸, 2012. 前交叉韧带力学特性差异对膝关节有限元仿真结果的影响. 医用生物力学 27(4): 375-380.(EI)
3. 万超, 郝智秀*, 温诗铸, 2012. 骨科植入物的微动摩擦学研究现状及进展. 摩擦学学报 32(1): 102-112. (EI)
2. Hao ZX*, Wan C, Gao XF, Ji T, 2011. The effect of boundary condition on the biomechanics of human pelvic joint under axial compressive load: a Three-Dimensional Finite Element Model. Journal of Biomechanical Engineering–Transactions of the ASME 133: 101006. Doi:10.1115/1.4005223. (SCI, EI, IF2020=1.90)
1. 郝智秀*, 冷慧杰, 曲传咏, 万超, 2010. 骨与膝关节生物力学行为研究.固体力学学报 31(6): 603-612. (EI)