[1] An H., Youn B.D., Kim H.S. Variable-stiffness composite optimization using dynamic and exponential multi-fidelity surrogate models[J]. International Journal of Mechanical Sciences, 2023, 257: 108547.
[2] An H., Youn B. D., Kim H. S. A methodology for sensor number and placement optimization for vibration-based damage detection of composite structures under model uncertainty[J]. Composite Structures, 2022, 279: 114863.
[3] An H., Youn B. D., Kim H. S. Optimal sensor placement considering both sensor faults under uncertainty and sensor clustering for vibration-based damage detection[J]. Structural and Multidisciplinary Optimization 2022, 65: 102.
[4] An H., Youn B. D., Kim H. S. Optimal placement of non-redundant sensors for structural health monitoring under model uncertainty and measurement noise[J]. Measurement, 2022, 204:112102.
[5] An H., Youn B. D., Kim H. S. Reliability-based design optimization of laminated composite structures under delamination and material property uncertainties[J]. International Journal of Mechanical Sciences, 2021, 205: 106561.
[6] An H., Chen S., Huang H. Concurrent optimization of stacking sequence and stiffener layout of a composite stiffened panel[J]. Engineering Optimization, 2019, 51(4): 608-626.
[7] An H., Chen S., Huang H. Multi-objective optimal design of hybrid composite laminates for minimum cost and maximum fundamental frequency and frequency gaps[J]. Composite Structures, 2019, 209: 268-276.
[8] Huang H., An H., Ma. H., et al. An engineering method for complex structural optimization involving both size and topology design variables[J]. International Journal for Numerical Methods in Engineering, 2019, 117(3): 291-315.
[9] An H., Chen S., Huang H. Stacking sequence optimization and blending design of laminated composite structures[J]. Structural and Multidisciplinary Optimization, 2019, 59(1): 1-19.
[10] An H., Chen S., Huang H. Multi-objective optimization of a composite stiffened panel for hybrid design of stiffener layout and laminate stacking sequence[J]. Structural and Multidisciplinary Optimization, 2018, 57(4): 1411-1426.
[11] Cui H., An H., Huang H. Truss topology optimization considering local buckling constraints and restrictions on intersection and overlap of bar members[J]. Structural and Multidisciplinary Optimization, 2018, 58(2): 575-594.
[12] An H., Jasveer S., Pasini D. Structural efficiency metrics for integrated selection of layup, material, and cross-section shape in laminated composite structures[J]. Composite Structures, 2017, 170: 53-68.
[13] An H., Huang H. Topology and sizing optimization for frame structures with a two-level multipoint approximation method[J]. AIAA Journal, 2017, 55(3): 1044-1057.
[14] An H., Chen S., Huang H. Structural optimization for multiple structure cases and multiple payload cases with a two-level multipoint approximation method[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1273-1284.
[15] An H., Chen S., Huang H. Optimal design of composite sandwich structures by considering multiple structure cases[J]. Composite Structures, 2016, 152: 676-686.
[16] An H., Xian K., Huang H. Actuator Placement optimization for adaptive trusses using a two-level multipoint approximation method[J]. Structural and Multidisciplinary Optimization, 2016, 53(1): 29-48.
[17] An H., Chen S., Huang H. Simultaneous Optimization of stacking sequences and sizing with two-level approximations and a genetic algorithm[J]. Composite Structures, 2015, 123: 180-189.
[18] An H., Chen S., Huang H. Laminate Stacking sequence optimization with strength constraints using two-level approximations and adaptive genetic algorithm[J]. Structural and Multidisciplinary Optimization, 2015, 51(4): 903-918.
[19] Chen S., Lin Z., An H., et al. Stacking sequence optimization with genetic algorithm using a two-level approximation[J]. Structural and Multidisciplinary Optimization, 2013, 48(4): 795-805.